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Abstract. A discrete model of an interface separating two phases is considered. 
The interface is defined as the boundary of a self-avoiding n-omino with volume n 
embedded in the hypercubic lattice. We prove that if there is no surface tension in the 
interface, then it has 'non-trivial' topology with probability one in the scaling limit. 
Here non-trivial topology means that the interface will consists of several disjoint 
components and will have non-zero genus. Moreover, the total area of the n-omino 
will be proportional to its volume. 

1. Introduction 

Interfaces separating two phases in statistical systems such as the Ising model have 
received considerable attention in recent years. Traditionally, self-avoiding surfaces 
(Binder 1979, Eguchi and Kawai 1982, Frolilich 1985, Nelson 1988, Privman and 
Svrakil 1988) were used to  model interfaces, and some, like the solid-on-solid model, 
proved very useful in simulating important properties (like the roughening transition) 
of an interface (Weeks 1980). In this pa.per we shall develop an alt,ernative way of 
looking a t  this problem. We begin by defining our  model. 

Let Zd be the d-dimensiond hypercubic lattice. We can represent the vertices 
of Z d  by d-tuples U = ( v 1 , v 2 , .  . . , u d ) .  Let { e i } k l  be the set of orthogonal unit 
vectors with endpoints in Z d .  Then e j  . e j  = 6,, . An edge with vertices in Z d  can 
be represented by a double ( v , e i ) ,  and has endpoints o and U + e,. We can use a 
triple ( U ,  e,, e j )  to  represent a unit square (plaquette) with vertices U ,  U + e , ,  U + e j  
and U + e, + e j  in Z d .  In general, a ( q  + 1)-tuple ( U ,  e i l ,  e i z , . .  . , e, ,) ,  with all the ij 
distinct, represents a q-dimensional hypercube, or q-cell, in Z d .  A q-cell is therefore 
the interior and boundary of In = I x I x . . , x I ,  where I = [0,1] c R, with vertices 
in zd.  

In this paper we are interested in a very specific case, the embeddings of d-cells in 
Z d .  The  boundary of a d-cell consists of 2d faces, which are (d - 1)-cells and which 
we call the faces  of the d-cell. One way to create a 2-omino from two d-cells is by 
identifying two faces, one on each d-cell. A third d-cell can be added to this 2-omino, 
by again identifying two faces, one on the cell to be added, and one on t'he 2-omino. 
Let the set of all n-ominoes, be the set of all subgraphs of Z d  made from 71, cl-cells, 
where a t  most two d-cells meet a t  every face. \Ve say that two d-cells are j o i n e d  if t,hey 
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share the same face, and an n-omino is connected  if every two d-cells in the n-omino 
are elements in a sequence of d-cells such that neighbouring d-cells are joined. The 
n-omino in figure 1( a )  is not connected, but in figure 1( b )  we illustrate a connected n- 
omino. We call a q-cell in the n-omino common if all the d-cells on which it is incident 
form a connected sub-n-omino. Since every face in the n-omino is incident on either 
one or two d-cells, all faces are common. However, not all q-cells, with q < d - 1 need 
be common: in figure l ( a )  we chose d = 3; the edge (l-cell) marked e and the vertex 
(O-cell) marked U are not common, but the edge e’ and the vertex U’ are common. 
(Usually, the term n-omino is used to refer only to the two-dimensional case. In this 
paper we extend the definition to  d dimensions (see Klarner 1965, 1967, Klarner and 
Rivest 1973, 1974).) 

Figure 1. The n-omino in ( a )  is not connected and contains q-cells which are not 
common. e and v are an edge and a vertex which are not common. On the other 
hand, the edge and the vertex, e’ and v’ respectively, are common. The n-omino in 
( b )  is connected, but not self-avoiding. The vertex v is not common. 

A connected n-omino is self-avoading if every face on the n-omino is incident on 
a t  most two d-cells, and if every q-cell, 0 5 q 5 d - 1, in the n-omino is common. The 
n-omino in figure 1( b )  is connected, but not self-avoiding (the vertex marked U is not 
common). In the rest of the paper we shall mean self-avoiding n-omino whenever we 
say n-omino. Let S, be the set of all self-avoiding n-ominoes made from n d-cells. 
Let U E S,,. The boundary of U consists of all the faces ( ( d  - 1)-cells) in U which are 
incident on only one d-cell in the n-omino. Let 8U be the boundary of U ,  where we 
choose 8 to  be the homology boundary operator. Since 8u separates the ‘inside’ of 
U from the ‘outside’, we call it an znterface. Clearly, 88a = 0,  that  is the boundary 
of U has no boundary. An example of an interface is the boundary components of a 
punctured disc in two dimensions (figure 2 ) .  

A self-avoiding n-omino in d dimensions is one possible generalization of polyomi- 
noes to  higher dimensions, which have received much attention in the literature (Eden 
1961, Read 1962, Klarner 1965, 1967). In higher dimensions there are interesting topo- 
logical considerations to  be taken into account, and we shall consider some of those 
in this paper. In this paper we also aim to generalize the rigorous results on surfaces 
in our previous works (Janse van Rensburg and Whittington 1989, 1990, hereafter 
referred to  as I and I1 respectively). n-ominoes are a generalization of self-avoiding 
surfaces, and since the interfaces of n-ominoes constructed from three-cells are self- 
avoiding surfaces, they provide a fresh look at  an old problem. The methods we use 
were inspired by those in I and 11, and by the remarkable work of Madras (1989) on 
a pattern theorem for lattice animals and trees. 
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Figure 2. A punctured disc in two  dimensions. 

n-ominoes also model physical systems studied in the laboratory. Consider for 
example a microemulsion (Langevin e t  a1 1982), which forms in a mixture of oil, 
water and surfactants. The surfactant molecules have hydrophylic and hydrophobic 
ends opposite each other. The surfactant molecules therefore separate the oil from 
the water. Langevin e l  a1 (1982) studied such a system and identified several phases. 
The n-ominoes we defined model such a system in the high-temperat,ure, and low 
surface tension and curvature energy, regime (see Huse and Leibler 1988). Under 
these conditions, Langevin e2 a1 (1982) identified a 'random isotropic phase', where 
the microemulsion has non-trivial topology. In this paper we invest,igat,e the possibility 
that this phase exists in our model (see also Leibler 1989). 

Frolich (1985) posed an interesting question: is there a regime in the three- 
dimensional Ising model where the interface has non-trivial genus with probability 
1, in the scaling limit? If we identify the $1 spins with the cells in the n-omino, 
and the -1 spins with the rest of Z3, then we have a correspondence between the 
Ising model and n-ominoes. The interface between +1 spins and -1 spins in the king 
model corresponds to  interfaces in our model. In the high-temperature regime we 
believe that a random isotropic phase similar to that in microemulsions exists in this 
model. 

In section 2.1 we prove that the number of n-ominoes consisting of n cells is 
bounded exponentially in n: there exists a constant A' such that s, < ICn-',  where 
s, is the cardinality of S,. We define patterns and consider their properties in section 
2.2. This leads to  the definitions of proper and eztraordinary patterns. Let S,,(Pg) be 
the set of all n-ominoes containing the pattern P exactly g times. In section 2.3 we 
prove that there exists a p such that li%+m s;'" = p ,  and, if P is an extraordinary 
pattern, then there exists a & ( P )  such that limfl+m sn(P0)'/" = p,(P) .  In section 
2.4 we consider the incidence of proper patterns in an n-omino. In particular, if P is 
a proper pattern, then we generalize a lemma in I to prove that 

for C, Ii' and k constants only dependent on d and P .  

the absence of a chosen patt,ern has on them. In  particular, if we define 
In section 3 we consider the growth constants of n-ominoes, and the effects that 

(1.2) 
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where s,(cP) is the number of n-ominoes which express the proper pattern P precisely 
Len] times on their boundaries, then we prove that there exists an e > 0 such that 
$‘(O) < $‘(c). If ( N , ( P ) )  is the mean number of times that the proper pattern P is 
expressed on an n-omino, then this result implies that  

Therefore, any pattern P will appear a t  least ~n times on average in an n-omino. This 
result has some immediate consequences. It implies that  an interface will have an area 
proportional to  its volume, that  any n-omino will contain at  least O ( n )  cavities (thus, 
the interface is disconnected and consists of O ( n )  parts). More interesting] the total 
genus (number of handles in three and more dimensions) of the interface is O(n) .  We 
conclude the paper with a few remarks and comments in section 4 .  

2. Preliminaries and constructions 

We start  with a few preliminary definitions. Let U E S, be an n-omino. Let V be 
the set of all vertices in U. We define the t o p  vertex and the bottom vertex of U by a 
lexicographic ordering of the vertices in V .  To find the t o p  face and bottom face of U 

we need the following definition. 

Definition 2.1. 
perpendicular to  the unit vector ek if and only if ai . ek = 0 for all 1 5 i 5 q.  

A q-cell ( v i a l ,  a 2 ,  . . . , a  ), where ai = &ej for each i and some j ,  is P 

The top vertex t (or bottom vertex b) of U are incident on d faces 

(b , e , ,  e 2 ] .  . . , e j - l ,  e j + l , .  . . , e d ) ) .  Only one of these faces is perpendicular to  e , ,  
namely when j = 1. We call this the top face of the n-omino U (or the bottom 
face) .  By definition o f t  and b ,  the top and bottom faces are each incident on only 
one d-cell in the n-omino. 

, - e j - l , - e j + l , . .  . , - e d )  for 1 5 j < d (or ( ( d  - 1)-cells) ( t ,  -e l ,  -e2 ,  . . . - 

2.1. A n  exponential bound on s, 

In this section we prove that the cardinality s, of the set S, of all n-ominoes consisting 
of n d-cells is bounded exponentially in n .  We generalize the approach for self-avoiding 
surfaces in I ,  which is based on a method of Eden (1961) and Klarner (1967) (applied 
to n-ominoes in two dimensions by Read (1962)). This procedure has the advantage 
that it leads to a sequence of improved bounds on s,, if the n- ominoes are viewed as 
a sequence of twigs (Klarner and Rivest 1973). 

Lemma 2.2. Let d 2 2. Then there exists a finite positive constant li’ such that 

where log Ii‘ = (2d + 1) log(2d + 1) - (2d  - 1) log(2d - 1). 
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Proof. Each cell 
(2 i , e l ,  e 2 , .  . . , e d )  in P has centre coordinates c = U + E.  e . .  The  top and bot- '. ' tom cells are found by a lexicographic ordering of the cells in P according to their 
centre coordinates. Label the bottom cell with the integer 1. We can now label all the 
cells in P with 2, 3, . . ., in the following manner. Consider the cell labelled 1. I t  has 
2d faces which may be incident on unlabelled cells. Label these cells with 2, 3,  . . ., by 
ordering them lexicographically (by considering their centre coordinates). Once this 
has been done, consider the unlabelled cells incident on the cell labelled 2, and label 
them in the same manner, until all the cells have been labelled to n. 

Consider now the cell labelled by p .  To each of its 2d faces we assign a binary digit. 
If there is a cell labelled r incident on a face of p ,  and r > p ,  then the binary digit has 
value 1. Otherwise it is 0. Hence, each of the cells in the n-omino is now characterized 
by 2d binary digits, each digit corresponding to one face of the cell. Since a digit is 
1 only if the face to which it corresponds is incident on a cell with larger label, there 
will be precisely ( n  - 1) instances where the digit will be 1, if we consider all the cells 
in the n- omino. The  n-omino can now be represented by a string of 2d(n - 1) binary 
digits, ( n  - 1) of which are 1s (note that the range of p is from 1 to ( n  - 1) ;  if p = n ,  
then there are no d-cells with labels larger than p incident on the d-cell labelled n ) .  
The number of ways we can choose ( n  - 1) from 2d(n  - 1) is an upper bound on the 
number of n-ominoes with n cells. Thus  

Suppose tha t  U E S,,. Let P be the set of all d-cells in a. 

where Ii' = (2d+  1)(2d+')/(2d- l)(2d-')l as can be shown (Feller 1950). 0 

2.2. Patterns 

In this section we consider the properties of patterns on n- ominoes. The  boundary 
of any n-omino in d dimensions is a set of ( d  - 1)- cells. The  orientation (in the 
homological sense) of any of these ( d  - 1)-cells are induced by the d-cells on which 
they are incident and by the homology boundary operator d.  

Definition 2.3. Let U E S,,. Then the boundary of a is an  interface consisting of 
(d - 1)-cells embedded in Z d .  Let P be a set of (d - 1)-cells with their orientations 
in da for some a E S,. Then P is a pattern if P is connected and if P consists of a t  
least one oriented (d - 1)-cell. 

Two  patterns are identical if they can be superimposed by a translation or a 
rotation (but not a reflection) of Zd,  and if every two of the superimposed ( d  - 1)- 
cells have the same orientations. The  patterns p in figure 3( a )  and p' in 3( b )  can be 
superimposed, but they are not identical, since they do  not have the same orientations. 
Suppose that a E S,. Then we say t81iatm da contains the pattern P g times if t,here 
exists g disjoint copies o f  P in 8a. Let Sn(P9) c S, be the set of n-ominoes such 
that each a E S,(Pg) contains P exactly g times i n  its boundary. Let the cardinality 
of S,(Pg) be s,(Pg). Let 

M , ( P )  = U Sn(Pi)). 
n>O 

Then M , ( P )  is the set of all n-ominoes which contain P exactly i times in their 
boundaries. We call the set M , ( P )  the minimal set of P .  



5884 E J Janse van Rensburg 

R 
Figure 3. The pattern p in ( a )  and p’ in ( 6 )  can be superimposed, but they are not 
identical, since they do not have the same orientation. 

Definition 2 .4 .  If M , ( P )  = 0 and if there exists a finite integer i for which M , ( P )  is 
not empty, then we call P an incomplete pattern. If M , ( P )  # 0, then P is a complete 
pattern. 

For example, if P is a single face on a d-cell a ,  then P is an incomplete pattern,  
since aa contains 2d disjoint copies of P. Suppose that P is an incomplete pattern 
and tha t  i > 1 is the smallest integer for which M , ( P )  is not empty. Let a E M , ( P ) .  
Then Ba contains i (disjoint) copies of the pattern P .  Label these patterns P J ,  for 
1 5 j 5 i. All these patterns must be on the same boundary component of a. To see 
this, suppose tha t  this is not the case. and that there exists a boundary component 
of a which contains P k times, where, 1 < k < i. There are two possibilities. The  
boundary component can be a cavity inside a, or it may be the component separating 
the inside of a from a point at infinity. If it is the former, then we fill all the other 
cavities with d- cells. Let p be an n-omino with one boundary component such that d p  
does not contain P ,  and such that we can cover each d- cell of a with a d-cell of p if we 
superimpose them. Occupy every location outside a, but inside p with a d-cell. Then 
the new n-omino has two boundary components, and it contains P precisely k times. 
This is a contradiction, since i is the minimum integer for which this is possible. On the 
other hand, if P is expressed k times on the ‘outside’ boundary component of U ,  then 
we simply fill all the cavities inside a with d-cells. We are then left with an n-omino 
which expresses P k times on its single boundary component, also a contradiction. 
Therefore, the i disjoint patterns P must be on the same boundary component. 

The  completzon of P with respect to a, P ,  is defined as tha t  pattern which contains 
the minimum number of faces on a component of 8a such that all the P, on a are 
contained in P .  P is a complete pattern,  since M , ( P )  # 0. Every incomplete pattern 
is therefore a subset of a complete pattern. For example, if P is a single face on a d- 
cell a, then P = da. 

Definition 2.5.  Let P be a complete pattern and let the minimal set of P be M , ( P ) .  
If there exists a a E M , ( P )  such that the bottom face of a is not on P, then P is a 
proper pattern. Otherwise we call P improper. 

Examples of patterns are given in  figure 4. Figures 4 ( a )  and 4(b) are examples of 
proper patterns in three dimensions, but the pattern in figure 4 ( c )  is improper. Let 
P be a proper pattern and let 

no = min{n I a E S,(P’) and the bottom face of r is not on P } .  ( 2 . 1 )  
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(That is, we need at least no d-cells to construct an n-omino u in the  minimal set of 
P such tha t  the bot tom cell of u is not on P.) 

Figure 4. The shaded twcwells on the n-omino in ( a )  is an extraordinary pattern, 
and in ( b )  we have a proper pattern which is not extraordinary. The oriented edges 
on the boundary of the disc in ( c )  is an improper pattem. 

Definition 2.6. Let A be the subset of Sn0(P ' )  which has a bottom cell not on P, 
and where no is defined in equation ( 2 . 1 ) .  Let the vertex set of an no-omino c in A 
be V ( a ) .  Then the size of the pattern P is defined by 

For the rest of this paper we limit our discussion to proper patterns. Note that if 
a pattern P is on an n-omino with a bottom face not on P ,  then it is easy to construct 
a top face not on P, since the n-omino has a finite size. Therefore, if P is a proper 
pattern, then there exists a U E S,(P') ,  for some 72 only dependent on P, such tha t  
the top cell and the bottom cell of u is not on P. 

There are some patterns which we cannot construct by concatenating a second 
n-omino onto the top face (or bottom face) of any given n-omino, such that the top 
face is the only (d - 1)-cell common to the two n- ominoes. We are therefore led to 
the following definition. 

Definztion 2.7. Suppose that P is a proper pattern. We call P an eztrczordinary 
pattern if and only if for any u E S,( P') and any n > 0 (such tha t  S,( P') # 0), there 
does not exist a (d  - 1)-cell in U which is incident on two d-cells and which separates 
u and P into two disjoint n-ominoes. 

The  pattern in figure 4( a )  is extraordinary, but i n  figure 4( b )  we illustrate a pattern 
which is not extraordinary. 

2.3. Concatenation 

Suppose tha t  Q E S, and p E Sn2. Then we can concatenate u and p by identifying 
the top face of u with the bottom face of p to form a new n-omino U @ p consisting of 
( n  + m) d-cells (where the operation cy @ 0 means 'identify the top face of cy with the 
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bottom face of p') .  The new n-omino is self-avoiding by definition of the top face and 
the bottom face. Since we do not destroy any vertices on r and p in this construction, 
concatenation is an injection i : S, x S ,  Q Sn+m taking pairs ( a , p )  I+ (r $ p ) .  
Therefore 

SnSm 5 S n + m .  (2.2) 

Let r g  E S n ( P g )  and p h  E Sm(Ph) where P is an extraordinary pattern. We 
want to  concatenate ug and p h  in such a way that the number of patterns is additive. 
Consider the concatenated n-omino ug @ p h .  Since P is an extraordinary pattern 
the maximum number of times P can occur is (g + h )  times. If the top face of 
r g ,  or the bottom face of p h ,  or both, are on a pattern, then the concatenated n- 
omino may have less than ( h  + 9) patterns P .  The minimum number of patterns 
in the concatenated n-omino is (g + h - 2). To deal with this possibility, select a 
k such that s k ( P i )  > 0 for i = 0 , 1 , 2 .  This is always possible since P is a proper 
pattern. Let wi E Sk(P') for i = 0 , 1 , 2 .  Since P is an extraordinary pattern, and 
therefore proper, it is always possible to choose the wf and k such that neither the 
top face, nor the bottom face are on a pattern P .  Consider the concatenated n-omino 
09 @ w i  @ p h .  This n-omino is self-avoiding by definition of the top and bottom face, 
and we select i such that i t  contains the pattern P precisely (9 + h )  times on its 
interface. Since we do not destroy any vertices on r g  and p h ,  this concatenation is an 
injection i : S f l ( P g )  x Sm(Ph) c, Sfl+,t,(Pg+h) such that ( d , p h )  H (ug$w! $ p h ) .  
Put  c = k. Then 

(2.3)  

We take these results together in the following lemma. 

Lemma 2.8. 
constant c ,  dependent only on d and P ,  such that 

Let d 2 2, and let P be an extraordinary pattern. Then there exists a 

SnSm 5 Sn+m 

sn ( P g ) s m  ( p h )  5 S n + m + c ( P g S h  ). 

Taking lemmas 2.1 and 2.8 together we find the following result. 

Proposiliou 2.9. 
constants & ( P )  and /? such that 

Let d 2 2, and let P be an extraordinary pattern. Then there exists 

and 

Moreover, s, 5 Pnt and there exists an integer c such that s f l ( P a )  5 &(P)"+' for all 
n > 0. 

Proof. These results follows directly from the theory of subadditive functions (Hille 
0 1948, Wilker and Whittington 1979) and lemmas 2.1 and 2.8. 
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2.4. T h e  cons t ruc t ion  of proper  pa t t e rns  

We are now in a position to prove an interesting fact about proper patterns. Let P 
and P‘ be two proper patterns on da,  where a E S,,. Then we say that P is conta ined  
in P’ ( P  c P’) if there exists at least one subset of (d -  1)- cells in P’ which is identical 
t o  P. 

Propos i t i on  2.10. 

in the set M 2 ( P ’ ) ,  where P C P’. 
(1) If P is a proper pattern, then there exists a proper pattern P‘ and an n-omino 

(2) If M 2 ( P )  # 8, then there exists a proper pattern P’ such tha t  P c P’. 

Proof .  
(1) Suppose tha t  P is a proper pattern. Then there exists a a E M , ( P )  such tha t  

the bottom face of a is not on P. We have to consider two possible cases. (i) Suppose 
that P is expressed on the component of da which separates the inside of U from a 
point at infinity. Then we can assume tha t  da has only one component. Let P‘ be the 
pattern which contains every ( d  - 1)-cell in da,  except the bottom cell. Let p be the 
n- omino a rotated 180° around a lattice axis perpendicular to e l .  Then d p  expresses 
P’, and the top  face of p is the only ( d  - 1)-cell of d p  not in P’. Consider ( p  @ a). 
This n-omino contains P’ exactly twice (since every ( d -  1)-cell on 8 ( p @  U) is on P’). 
Therefore ( p  @ a )  E M2(P’) ,  where P c PI. (ii) Suppose tha t  P is expressed in a 
cavity inside a. Then we consider (sea), which contains two copies of the cavity that 
contains P .  Choose P’ to be the pattern containing every (d  - 1)-cell on the  cavity. 
Then d(a @ a) contains P’ twice, and P c PI. 

(2) Suppose tha t  a E M,(P). Then there are two possible cases to consider. (i) 
Suppose tha t  the bottom face of a is in P. There are again two cases. (a) If the 
patterns are expressed on two different components of da ,  then da has a t  least two 
components, one of which is a cavity. Choose P‘ to be every ( d  - 1)-cell on the cavity 
which expresses P ,  then we have an n-omino containing P’ once, and which has a 
bottom face not on P’. (b) If the patterns are on the same boundary component, then 
they must be on the component separating t,he inside from U from a point a t  infinity 
(since the bottom face is on this component). Choose P’ to be every face on this 
component, except for the bottom face. Then da contains P’ once and P’ is proper. 
Moreover P c P’. ( i i )  Suppose that the bottom face of a is not on P .  There are again 
two cases. (a )  If the patterns are on the same component of da, then let P’ be the 
pattern containing every (d - 1)-cell on that component, except for the bottom face. 
Then P’ is a proper pattern containing P twice. (b)  If the patterns are on different 
boundary components, then at least one must be expressed in a cavity. Fill this cavity 

U in, and let P’ = P on the other component. Then P’ is a proper pattern. 

We have defined proper and extraordinary patterns in section 2.2. I n  this sec- 
tion we prove an important inequality between the number of 1%-ominoes which lack 
a particular proper (or extraordinary) pattern and the number of n-ominoes which 
express the pattern precisely g tinies on its interface. Let p be a permutation on the 
integers 2, = {1,2! .  . . , d } .  Let C, = ( v 1 u 1 , a 2 , .  . . , a q )  be a q-cell. Then there exists 
a permutation p such tha t  ai = for 1 5 i 5 q .  We begin by considering the 
properties of some q- cells. 
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Definition 2.11. A hypercube D,(u )  of size 1 is the subspace 

Definition 2.12. Let ci = where 0 5 i 5 q and where p is a permutation on 2,. 
Let U, = (u , c1 , c2 , .  . . , c p )  be a q-cell incident on two d-cells, A = (v, a 1 , u 2 , .  . . , a d )  
and B = ( u , b 1 , b 2 , .  . . , b d ) ,  where ai = bi = ci if 1 5 i 5 q and where ai = *ep(,) 
and bi = for q < i 5 d. If ai # b j  (have opposite sign) for q < i 5 d ,  and if 
q < (d - l),  then we call U, uncommon. (In other words, if q is the largest integer 
such that U, is incident on both A and B ,  and q < ( d -  l),  then Uq is uncommon.) 

If U, is uncommon. then it cannot be incident on more than two d-cells. This 
follows immediately from the fact tha t  there are only two choices of the ai and the bi 
for each i > q in definition 2.12. If U, is incident on more than two d-cells, then C', is 
a face of a ( q  + 1)-cell C,+l incident on at least two of the d-cells. If C,+l is incident 
on precisely two d-cells, and ( q  + 1) < (d  - l),  then C,+, is uncommon. 

We can now prove the main result of this section. 

Proposition 2.13. Let d 2 2 and let U E S , (Po) ,  where P is a proper pattern. 
Then it is possible to  construct P in a t  least Ln/CJ locations in 6, where C is a 
positive constant dependent only on d and P. Furthermore, there exists finite, positive 
constants I< and k (dependent only on d and P) such that 

1.1 is the largest integer smaller or equal t o  z, z a real number. 

Proof. Let A(P) be the size of P as defined in definition 2.5. Then there exists a 
p E Sn0(P1) such tha t  p has a bottom face not on P and such that p can be fitted 
into a hypercube of size A ( P ) .  Let D,(u)  be a hypercube of size 1. Then U can be 
covered by a t  least Ln/id] copies of D , ( u )  for appropriate choices of I J .  

Choose any of the hypercubes, say D. Let D , ,  i = 1 , 2 ,  be hypercubes with the 
same midpoints as D. but with sizes (1  - 2)  and (1  - 4)  respectively. This is illustrated 
in figure 5 ( a ) ,  which is a projection of U and D onto the (ei ,ej)-plane.  

Consider the subspace D - D,, which is inside the hypercube D ,  b u t  outside the 
hypercube D,. Occupy every location in  this subspace not already occupied with a d- 
cell, and delete all the d-cells of U inside D,. This produces a new connected n-omino 
6'. A projection on two dimensions is illustrated in figure 5 ( b ) .  Some q-cells in U' 

may be uncommon. These q-cells have to be in a D ,  the boundary of D ,  since we have 
added cells in the space D - D ,  while leaving 6 unchanged outside D .  We shall now 
remove these uncommon cells by deleting some q-cells i n  the subspace D - D , ,  

Let U be an uncommon q-cell i n  U ' .  Then by definition 2.12 U is incident on 
precisely two d-cells A and B ,  A in the section of 6' outside D and B in D - D , ,  Since 
B has a face in d D ,  A has at most a q-cell i n  8 D .  If q = ( d -  l ) ,  then '4 and B share 
a face on a D ,  which is not uncommon, therefore q < (d  - 1). Suppose that q = 0. 
Then U is a vertex of E and t.herefore a vertex of D. Delete B .  This action removes U 
as an uncommon cell, since ti is then only incident on A .  Moreover, deleting B in the 
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Figure 5 .  Constructing a new proper pattern in an n-omino. These diagrams are 
projections of the construction in d dimensions to the plane. 

space D - D, does not create any uncomnlon cells or does not disconnect d ,  since the 
subspace D ,  - D, is filled. Suppose that q > 0. Then we can again delete E .  This 
will reduce U to a t  most 2q uncommon ( q  - 1)-cells, since if .4 and E both contain U ,  
then they also contain the boundary of U ,  which consists of ( q  - 1)-cells. By induct,ioii 
it  then follows tha t  we can delete cells i n  the subspace D - D, to turn all uncommon 
q-cells common. A projection of this situation is illust,rated in figure 5 ( c ) .  

Lastly, if these deletions turn some q-cells i n  the space D - D, uncommon, then 
we repair that  damage as follows. Suppose 'U is an uiicomnion q-cell i n  D - D,. Then 
'U is incident on two d-cells i n  D - D ,  (and  q > 1).  Deleting one of t,hese d-cells will  
turn 'U common. Note that, it is always possible tmo do t.his; we cannot disconnect d .  
Bot'h d-cells incident on 1: have a face in  8D. I f  both t,liese faces are incident on d-cells 
in d, then these cells must share an uncommon q-cell. which is a contradict,ion, since 
all the cells outside D are comnion. 

The  maximum number of ways that we can  perforin this construction is bounded 
by the number of ways that we can pack d-cells i n  D, say ICo. We choose ( /  - 6) = 
( A ( P )  + 2) ,  then the cavity ( the  inside of D3)  is large enough to contain p .  IVe add p 
to U' by glueing its bottom face to the inside of t,he cavity with an extra d-cell. The  
maximum number of d-cells t)Iiat we can remove from ~7 i n  this construction is I d ,  and 
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we may add as many as I d  d-cells to U .  This construction is therefore a map 

which is at most Ii', to 1 and where S,!(P') is the set of all j-ominoes containing the 
pattern P once inside a cavity, and consists of j d-cells. Let the cardinality of S j ( P ' )  
be s;(P1). Then,  since the top face of any n-omino T E S,!(P') cannot be on the 
pattern P ( P  is inside a cavity), we have s ; (P ' )  5 s(itl(P'). Hence 

where I = A(P)  + 8. Obviously s',(P') 5 s,(P'), so, if we put Ii' = K0(21d + 1 )  and 
IC = I d ,  and if we choose g hypercubes from [n/CJ, where C = I d ,  then we find 

3. Growth constants and patterns 

Let P be a proper pattern consisting of p faces. Then the maximum number of times 
that P may be expressed on an interface au, where U E S, is bounded by [ 2 d n / p ] .  
Let S,(PL'"J) be the set of all n-ominoes which express P precisely L E ? z ]  times on 
their boundary components. Let the cardinality of this set be 

Let 6: = max{E I ~ ~ = = o s , ( ~ P )  # 0). Then 6; 5 2 d / p .  Furthermore, let S,(L E P )  
be the set of all n- ominoes which expresses P at  most [mJ times on their boundary 
components. The  cardinality of this set is 

(3 .2)  
g=o 

Note tha t  s,(< OP) = s,(Po) and s,(l E L P )  = s , ~ ,  

Lemma 3.1.  Suppose that P is an extraordinary pattern. Then there exists a constant 
~'(6) such tha t  

Moreover, x p ( c )  is log-concave in [0, E ; ]  and continuous in (0,  E ; ) .  
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Proof. To prove existence, note tha t  equation (2.3) implies 

Taking logs, dividing by n and letting n -+ CO gives 

and f ( c )  is therefore log-concave in [0, E ; ] .  Continuity in ( 0 , ~ ; )  follows from log- 
concavity. o 

If P is a proper pattern,  but not extraordinxy, then we define 

~'(6) = l imsups,(< E P ) ~ ' " .  
n-co 

(3.3) 

If P is an extraordinary pattern then ~ ' ( 0 )  = P,(P) and xp(c;) = P in proposition 
2.9. We can use the results from section 2 to prove the following inequality. 

Proposition 3.2.  If P is a proper pattern, then ~'(0) < x P ( c )  V O < E 5 E:. 

Proof. Let 6 > 0 be any small real number. Then by proposition 2.9, lemma 3.1 
and equation (3.3) there exists an infinite set No c n/ (where N is the set of natural 
numbers) such tha t  for every n E No 

( X P ( O )  - 6)" i s n ( 5  OP) 

Consider now 
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The combinatorial factor is 0 unless g 5 [(n  - kg) /CJ .  Thus  g 5 [n/ (C+k)J .  Choose 
E < 1/(C+ k), so tha t  L E ~ J  5 Ln/(C + k ) J .  Then L E ~ J  5 [ (n  - k g ) / C J ,  and therefore 

= (x'(0) - q n ( l  + 1<-1(x'(O) - 5)-k)LEnJ 

for all ( n  - kg) E No and 0 < E < 1/(C + k). Take the 1/n power, and let n + CO in 
No + kg. Then we can take 5 -+ O f ,  so tha t  

l imsups,(< E P ) ~ / "  2 X'(O)(I + K - ' X ' ( O ) - ~ ) ~ .  

X P ( E )  > f ( 0 )  

n-cn 

Therefore 
vo < E < 1/(C + k). 

Lastly, note that ~ ' ( 6 )  is monotone increasing in [0, t i ] ,  hence t,he above inequalility 
is valid in (0, E:]. 0 

Let 
$' (E)  = Iimsup s ~ ( E P ) ' ~ ~  

n-o3 

Then we have the following corollary. 

(3.4) 

Corollary 3.3. If P is a proper pattern, then there exists an E in ( O , E ~ ]  such tha t  
S P ( 0 )  < $'(E). 

Proof. Since sn(5 E P )  = Cizi s,(Pg),  ~ ' ( 6 )  grows as fast as the term with the 
largest growth constant i n  equation (3.2). By proposition 3.2 ~ ' ( 6 )  > ~'(0) if E > 0,  
and ~'(0) = $ ' (O) .  Hence, there exists an E' in ( O , E ]  such that x'(E) = $'(E'). 
Hence $ ' (E ' )  > 4'(0). 0 

\lie can now immediately prove our main result. 

Theorem 3.4. Suppose that P is a proper pattern. Let (N,(P)) be the mean number 
of times that P is expressed on n-ominoes in the set S,%. Then 

Proof. Consider 

The  denominator and nunierator both have [ E ;  n] terms, each term growing exponen- 
tially in n .  The  terms growing fastest are those with largest growth constants, whicli 
is ~ ~ ( 6 )  where 6 > 0 ( b y  corollary 3 . 3 ) .  Choose d to be the smallest number such 
that $ ' ( K ' )  = $ ' ( E ) .  Then 



The topology of interfaces 

Evidently, we have (where P is a proper pattern) 

If we imply relation (3.5) with the relation -, then we may write 
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(3.5) 

(3.6) 

By combining proposition 2.10 and theorem 3.4 we have the following. 

Theorem 3.5. 
S,. Then 

Suppose that P is a pattern which can occur twice on an n-omino in 

Proof. By proposition 2.10 if M , ( P )  # 0 then there exists a proper pattern P’ 2 P. 
0 By theorem 3.4 (Nn(P’)} - n. Therefore ( N , ( P ) )  - n. 

Figure 6. A pattern w i t h  genus one 

4. Discussion 

(1) Let P be the pattern in figure 6. Then P is extraordinary, so by t,heoreni 3.4 
we know that (N,(P)) - n .  But  the genus of an interface of an n-omino is bounded 
(from below) by N , ( P ) .  Therefore, the genus of the average interface is (g) - R. 
Let g represent any topological property which can be expressed on the interface of a 
finite n-omino in d dimensions. Then we expect the number of times this property is 
expressed on an n-omino to be proportional to the volume of the n-omino. \Ve have 
the following theorem. 

Theorem 4.1. Let d 2 2 .  Let g be any topological property of a finite n-oniino or of 
its embedding. Suppose that this property can occur more than once on an n-oniiiio. 
Then the average number of times it occurs on a n  n-oniino grows proportional to the 
number of d-cells in the n-oinino, where proportional means in the sense of theorem 
3.5.  
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(2) By theorem 4.1 the average surface area of an n-omino grows as its volume. 
This is an interesting result: the n-ominoes in S, are ramified in the sense that each 
of the d-cells has a face on au, where U E S,, with positive probability. 

(3) Some outstanding questions remain. Can we prove that lim,,-m(Nn(P))/n = 
'ip exists? What is the numerical value of nP? 

(4) Can we prove that $'(c) = l i q - m  s,(EP)'/" (equation (3.1)) exists? Can we 
prove log-concavity and continuity of $' (E)  and x ' ( E )  in [ O , c E ] ?  We were partially 
successful with f ( c ) ,  if P is an extraordinary pattern (lemma 3.1). For $ ' ( E )  we 
had t o  be satisfied with the definition in equation (3.4). Following the arguments 
developed by Madras e2 a1 (1988), we note that the following properties of $ p ( ~ )  are 
important. Is $'(E) strictly concave? If it is not, then there is a first-order phase 
transition. If the maximum value in $'(E) is not attained a t  a unique point, then 
there is a transition, but a t  infinite temperature. 

(5) There is a need to  generalize this work to the embeddings of q-cells in d 
dimensions. If q = 2, then we have surfaces (I, 11). Proving a pattern theorem for 
surfaces will be an important step in the understanding of these n-ominoes. This 
work is also closely related to  the results of Madras (1989) on lattice mimals. Every 
n-omino in S, is dual to a site-animal, but the opposite is not true, there are animals 
which are not dual to n-ominoes. In particular, if we consider an n-omino dual to any 
animal, then it might contain uncommon q-cells. 
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